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MAVEPACKET THEORY OF COLLISIONAL DISSOCIATION IN MOLECULES+

Kenneth C. Kulander

University of California, Lawrence Livermore National Laboratory
Theoretical Atomic andlloleqular Physics’Group, Livermore, CA 94550

Abstract: An explicit integration scheme is used to solve the time dependent
, Schrodinger equation for wavepackets which model collisions in the collinear

H + H2 system. A realistic LEPS-type potential energy surface is used.
Collision energies considered are above the dissociation threshold and proba-
bilities for collision induced dissociation are reported. Also quantummechan-, ical state-to-state transition probabilities are generated. These results
are compared to extensive classical trajectory calculations performed on this
same system. We study the time evolution of the wavepacket densities to
understand the dynamics of the collinear collisional dissociation process.

1. Introduction

Collisional dissociation of molecules plays”an important part in the kinetics
of high temperature systems such as in gas lasers and flames and in molecular beam
and shock tube experiments. Traditional time independent methods of investiqatinci
chemically reactive systems fail when the collision energy exceeds the disso;iat
threshold. Solution of the time dependent Schrodinger equation,+

i&Y = HV, (

Gn

)

using wavepacket methods, however, does provide a means of obtaining a detailed
understanding of the collision-induced dissociation (CID) process. Me have
utilized thi; approach to study the collinear H + H2”syst&n for a range of colli-
sion energies which includes the dissociative continuum and for three different
initial vibrational levels of the diatomic. The main advantage of the wavepacket
approach is that the wavefunction remains localized in configuration space whether
the products include states with three free particles or not. An additional bene-
fit results from the fact that the wavepacket consists of a linear combination of
energy states so that for a particular choice of initial states, it is possible
to obtain state-to-state transition probabilities for a range of collision energies
from a single wavepacket calculation. The major drawback of time dependent methods
is that they require the solution of Eq. (1) for the evolution of the wavefunction
over a period corresponding to the entire collision time. In general this is more
expensive in computational effort than solving the time independent equations
many times for the different energies required. However, for systems in which
both reaction (rearrangement) and dissociation are possible the time dependent
approach seems to be required. Finally the recent emergence of fast, large com-
puters has made these calculations feasible.

In the next section the model collinear system is briefly described, the
equations to be solved are derived and our method of integrating the Schrodinger
equation is presented. !The following section contains the resu t$ of our calcula-
tions which include probabilities for reaction and dissociation along with state-
to-state vibrational transition probabilities. tiealso compare our results to.
quafiiclassicalprobabilities generated fr~ extensive trajectory calculations on
thts same system. Our concluding remarks regarding future efforts using these
methods appear In the final section.
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2. Calculations

tiehavechosen the collinear, reactive H + H2 system as a model for study of
CID. This system has received the mostattentfon of theoretical dynam~,cistsas
the test case for all new collision theories. Assuming the validity of theSorn
Oppenheimer approximation we calculate,the wavefunctlons only for the nuclear
motton on a single adiabatic potential energy surface. The three nuclei, which
*label A for the incident atom and B and C for the nuclei of the diatomic, are
constrained to lie on a line which we identify as the %-axis. The positiotisof
the three nuclei are given by x , x

$8
and xc and their masses by mA, ~ and%.

Defining mass weighted interns co rdinates

and

q] = x~ - (~ XB + ~ xJ/(~ + R@

J# +J’’2(XB-@ (2b)

and removing the center of mass motion, we
convenient form

(2a)

can write the HamiltonIan in the

(3)

where u =mA(
1! ‘“%)’” ati ‘“’‘s ‘he ‘h’ ‘ss” ‘he ‘tentia’ ‘-w ‘~rface’V, given by a EPS unction with parameters chosen by Kellerhalls et. al ) fs

shoti in fig. 1. Asymptotically the surface

Fig. 1. Potential energy surface for collinear H+ H2

&mmes a Horse dtatomic interaction with a dissociation energy of 4.7466 eV. In
the interaction region there is a saddle point whose height is approximately
0.4 eV. The initial arrangement is shown schematically in fig. 1 with anarrow
indicating the collisional motion into the interaction ~egion. The repulsive
walls of the surface have been truncated at about ?0 eV above the asymptotic limit.

We solve eq. (1) by setting up an Initial wavepacket which corresponds to a
single ~ibrational state of the diatomic and a range of collision energies. The
wavepacket is a product of a Horse oscillator in the coordinate q2 and a Gaussian
distribution centered in the usynptitic region in the scattering coordinate ql.
The wavepacket is givenan initial relative momentumko in the directionof the
interaction region. The operationof the Hamiltonianon the wavefunction is evalu-
ated us$ng finite difference methods. The wavepacket is defined on a two dimen-
sional grid with 100-200 points in each direction. The second derivatives are
generated using a 5-point formula. Thus, knowing the right-handeside ofeq. (l),



.,,,. .. ....,,!+*W ——........—....——- .—— ..”.—

we have a (complex) first-order differential equation (in time) to solve. A
fifth-order Adams-Bashforth predictor corrector (PC) is used to perform the
time integration. Further details of this method can be found “n ref. 2. A

4similar method was originally developed by tlcCulloughand Wyatt ) to study this
system but at much lower collision energi s.

9
The collision times are found to

be 400-500 atomic time units (2.42 x 10-1 see) and for the collision energies
considered approximately 3000 integration steps were necessary.

Since the wavepacket is a linear combination of different momentum states,
it tends to spread during evolution through a collision. It is necessary to have

●

a sufficiently large grid that the wavepacket does not reach the boundary. After
the wavepacket has returned to the asymptotic region, where the motion is separable,
we can project onto final states to obtain probabilities for generating particular

● products. The wavefunction in the initial arrangement channel, for example becomes

-1/2 ~
~
dkan(k) eikq~ xn(q2) e

-iEnkt
Y(cllqz t) + (2W) n (4)

where Xn is a bound or scattering horse wavefunction and Etlk= Cn + k2/2v. The
square of the expansion coefficient an(k) gives the probability for that parti-
cular state in the final wavefunction. In the initial wavepacket, each total
energy corresponds to a unique initial state. This is true only because the
chosen molecular vibrational state is an eigenfunction. Knowing the probability
of an energy component in the initial ‘wavepacketand the probability of a final
state of the same energy is sufficient to define the state-to-state transition
probability. An expression similar to that in eq. (4) can be used in the rearrange-
ment channel to obtain state-to-state reactive probabilities. If we project our
final wavefunction onto all possible bound final states (there is on?ya finite
number for a fixed total energy) we can obtain the dissociation probability from
the formula

PD(E) = 1 - z P;(E] - :P:(E)
n

(5)

where P: and,!$ are the probabilities of populating vibrational state n in the
non-reactive and reactive arrangements respectively. In principle it would also
be possible to calculate probabilities for specific dissociating states although
we have not done so here. Therefore it is possible from a Single’calculation to
obtain transition probabilities to all energetically accessible final states from
a particular initial vibrational level of the diatomic for a range of collision
energies.

A second sort of information is available fromtime dependent calculations.
We can follow the evolution of the wavepacket through the collision and gain some
insight into the dynamics of the CID process. He can see what regions of config-
uration space are explored by the wavepacket. Also it is possible to investigate
systematically which features of the potential energy surface can cause the wave-
packet to fragment or to spread rapidlyor to behave unexpectedly. In the next
section we present results of both kinds, wavepacket densities and transition
probabilities for the H + H2 $ystem.

3. Results
●

Ue have rtudied the collision between cm H atom and an H2 molecule for a
range of col?ision energies (4-12 eV) and for three different initial vibrational

9 levels of the molecule v = O, 1, 4. The three nuclei are constrained to lie on
a line. In all cases we found that the wavepacket after collision returned to
the region of configuration space corresponding to the initial arrangement. In
figs. 2 we show snapshots.of the wavepacket densities at differenttimes during the
evolution for a v = 1, k = 2*o-1 case. The two peaks in the initial wavepacket
result from the node in ?he vibrational wavefunction. In the final wavepacket the
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two peaks are still evident indicating that there is a large elasticscattering
component.An examination of the evolution shows that the wavepacket appears to
reflect off the repulsive wall at the endof the entrance channel. This behavior
is contrary to what one would expect from a classical, billiard ball picture in
which the rearrangement process is most,likely. It should be noted that only for
this energy range are the non-reactive processes dominant. At lower energies,
different parts of the surface determine the dynamics and the reactive probability
becomes almost unity. Also for different mass combinations the skew angle of the
surface will be different and the product distributions could be changed dramati-
cally.

This sortof qualitative information cariproduce an understanding of the
dynbmics of particular CID processes, but as indicated above we obtain deteiled
quantitative results also. By projecting the final wavepacket onto separable
asymptotic eigenfunctions we obtain state-to-state transition probabili ies.

&Thedetajled results from these calculations will be reported elsewhere ). Me
present some of these results here to illustrate boththe behavior of the results
and the sort of information which is available from these calculations.

Since this system isonlya model our results cannot be compared directly
to experimental measurement. The collision energy is high enough, however, that
classical mechanics can be expected to be approximately valid. In order to test
our results and to assess the extent to which quantal effects are important or

ithis system, extensive classical trajectory calculations have been performed )
and those results will be presented along with the quantum results.
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Figs. 3 show vibrational state distributions, P~lnF, for the non-reactive
arrangement channel for two different collision energies and the initialvibra-
tionalquantumnumber,n~,beingfour. The superscript N indicates these
probabilities are normalized such that ~ P}In = 1. The diatomic potential in the
asymptotic region supports 17 bound sta!es (O< n< 16). The finalvibrational
state of a classical trajectory is assigned using the standard quasi-classical
trajectory histogram method (QCTH)5,. TWO conclusions cam be drawn from figs. 3.
First, the quantum distributions can have a considerable amount of structure and
second, the classical results reproduce the quantumbehavioronly in an average
sense, not in detail. The dependence of these normalized probabilities on colli-
sion energy (Erel) is show in fig. 4. Again the classical results agree on the
average with the quantum which show an interesting oscillatory structure. We found

0.4 I 1~-o I
-1
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Fig. 4. Normalized state-to-state transition probabilities for select final states
as a function of collision energy. Erel.

less structure in the cases when the initial vibrational level was less excited.
An assessment of the accuracyof the calculations can be gained bydetennining
whether the probabilities satisfy d@ta~~ed balance. Probabilities Pnnl are
compared to Pn~n for n,n’ ‘ 0,1, and 4 from the quantuthcalculation in fig. 5a
and from the classical results in fig. 5b. He find excellent agreement quantum
mechanically but not classically. It iswel’1 known that the QCTHmethodB:;t~t
the best way to extract “quantum” results from classical calculations.
methods6) make use of the lower moments of the final state distributions and
information theory to quantize the trajectory results. Me have tested whether the
quantum moments can be generated classically. In fig. 6 the second (root mean
squared) moments are compati for the different initial states. He found in
general Wt the lower classicaland quantum rents agr~quite~~l but that the
higher moments can disagree significantly.
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Fig, 5. Retailed balance.
a function of total energy,

Probablli~ies for forward antireverse transitions as
ET, from (a) quantum and (b) classical calculations.

Finally we have obtajned reaction and rlissotiationprobabilities for the Q
states studied. Me found that within the accuracy of the $a~culations, the
reaction probabilities in this energy range are zero.

The classical calculations)

also found anti-threshlds for collision e~ergies between 3 or 4 eV and zero
probabilities above, The dissociation

probabilities are plotted in fig. 7.
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Fig. 6. Second (root mean squared) moments of the quantum and classical final
vibrational state distributions as a function of collision energy, Erel.
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Fig. 7. Quantal and classical dissociation probabilities as a function ofcolli-
sion energy, Erel.

Me observe that clissoclationthresholds in the collinear s stem aredisplaced
rfrom the energetic thresholds tiich are 4.48, 3.96and 2.6 eV forn~ = O, 1 and

4 respectively. On~Y in the case m = 4 is there an appreciable probabilityof
dissociation in the energy range considered. This is due to the more diffuse
nature of the initial wavepacket in this state so that much more of the potential
energy surface including parts of the repulsive wall which do not reflect back
into the entrance channel bound states is involved in the collision. For nl = O
and 1 the classical calculations show no dissociation while the quantum results
rise to around ten percent.

These calculations provide insight into the process of nmlecular,dissociation
in the collinear world. In three dimensions the stripping mechanism which cannot
occur in a collinear arrangement has been found to be very important. Future
calculations which will involve relaxation of the geometricconstraints will pro-
duce a more complete understanding of the dissociation process.

.
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4. Conclusions

Me have investigated the collinear H + H2 system for collisionenergiesabove
the dissociation threshold by integrating the time dependentcSchrodingerequation.
Reaction, dissociation and vibratfon?l transition probabilities have been obtained
and compared to classical trajectory calculations on the same system. We found
that fn the energy regime where classical mechanics can be expected to be valid
the classical and quantum results agreed on the average but not in detail. The
time evolution of the wavepacket densities provfded fnsight fnto the dynamics of
the collisional dissociation process. The wavepacket was reflected back into the

? initial arrangement channel and no reaction or rearrangement was found to occur.
~ 14eare presently adaptfng these mthods to treat more complicated processes.

Wavepacket methods are best suited for higher energy collision processes in w!!ich
R the normal spreading during the propagation is minimal. At higher energies in

real systems additional electronic states will be accessible. Therefore we are
generalizing these methods to study scattering on two interacting surfaces whether
they are coupled by the nuclear motion (Born Oppenheimer coupling) or by a strong
radiation field in case of laser induced chemical reactions. Secondly we have
been using wavepacket methods to investigate the photodissociation of triatomic
molecules. In this process a photon is absorbed by the molecule which changes
the electronic state from an attractive, bound surface to one which is repulsive.
It is necessary to determine the evolution of a wavepacket on the dissociative
surfs e in order to calculate the cross section for the process.

$
It has been

shown ) that the total cross section is determined by the short time behavior of
the wavepacket but thatby followingthepropagationintotheasymptoticregion,
it is possible to completely characterize the product state distributions). From
a single wavepacket calculation the total and partial cross sections can be cal-
culated for all photon energies. Systems which dissociate to three-body final
states have been studied using wavepacket methodsa). It Would be difficult if
not impossible to treat these processes using time independent methods.
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